CHAPTER

Sequences and Series

An arithmetic progression (A.P.) : a, a + d, a + 2d.....a + (n-1)d is an A.P.

Let a be the first term and *d* be the common difference of an A.P., then n^{th} term = $t_n = a + (n - 1) d$

The sum of first *n* terms of are A.P.

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} \left[a + \ell \right]$$

 r^{th} term of an A.P. when sum of first *r* terms is given is $t_r = S_r - S_{r-1}$.

Properties of A.P.

- (i) If a, b, c are in A.P $\Rightarrow 2 b = a + c \& \text{ if } a, b, c, d \text{ are in A.P.}$ $\Rightarrow a + d = b + c.$
- (ii) Three numbers in A.P. can be taken as a d, a, a + d; four numbers in A.P. can be taken as a 3d, a d, a + d, a + 3d; five numbers in A.P. are a 2d, a d, a, a + d, a + 2d & six terms in A.P. are a 5d, a 3d, a d, a + d, a + 3d, a + 5d etc.
- (iii) Sum of the terms of an A.P. equidistant from the beginning & end = sum of first & last term.

Arithmetic Mean (Mean or Average) (A.M.):

If three terms are in A.P. then the middle term is called the A M. between the other two, so if *a*, *b*, *c* are in A.P., *b* isA.M. of *a* & *c*.

n-Arithmetic Means Between Two Numbers:

If a, b are any two given numbers & a, $A_1 A_2 \dots A_n$, b are in A.P. then $A_1 A_2, \dots, A_n$ are the A.M.

$$A_1 = a + \frac{b-a}{n+1}, A_2 = a + \frac{2(b-a)}{n+1}, \dots, A_n = a + \frac{n(b-a)}{n+1}$$

 $\sum_{r=1} A_r = nA$ where A is the single A M. between a & b.

Geometric Progression: *a*, *ar*, *ar*², *ar*³, *ar*⁴.....with a as the first term & *r* as common ratio.

(i) n^{th} terms = ar^{n-1}

(ii) Sum of the first *n* terms i.e.
$$S_n = \begin{cases} \frac{a(r^n - c_n)}{r-1}, & r \neq 1 \\ na & r = 1 \end{cases}$$

Geometric Means (Mean Proportional) (GM.):

If a. b, c > 0 are in G P. b is the G M between a & c, then $b^2 = ac$

n Geometric Means Between Positive Number *a*, *b*: If *a*, *b* are two given numbers & *a*. *G*₁, *G*₂.....,*G*₃ *b* are in G.P Then *G*₁, *G*₂, *G*₃...., *G_n* are *n* GM.s between *a* & *b*. *G*₂ = a $(b/a)^{2/n+1}$..*G_n* = $a(b/a)^{n/n+1}$

Harmonic Mean (H.M.):

If a, b, c are in HP., b is the H.M. between a & c, then $b = \frac{2ac}{a+c}$

H.M, *H* of
$$a_1, a_2, ..., a_n$$
 is given by $\frac{1}{H} = \frac{1}{n} \left[\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right]$

Relation between Means:

 $G^2 = AH$, A.M. > G.M. ≥ H.M. and A.M. = G.M. = H.M. if $a_1 = a_2 = a_3 = \dots = a_n$

Important Results

(i)
$$\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r$$

(ii)
$$\sum_{r=1}^{n} ka_r = k \sum_{r=1}^{n} a_r$$

(iii)
$$\sum_{r=1}^{n} k = nk$$
 where k is a constant,
(iv) $\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
(v) $\sum_{r=1}^{n} r^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$
(vi) $\sum_{r=1}^{n} r^{3} = 1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$
(vii) $\sum_{i< j=1}^{n} a_{i}a_{j} = (a_{1} + a_{2} + \dots + a_{n})^{2} - (a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2})$